BZOJ 2432: [Noi2011]兔农 December 20, 2016 ###Description 农夫栋栋近年收入不景气,正在他发愁如何能多赚点钱时,他听到隔壁的小朋友在讨论兔子繁殖的问题。 问题是这样的:第一个月初有一对刚出生的小兔子,经过两个月长大后,这对兔子从第三个月开始,每个月初生一对小兔子。新出生的小兔子生长两个月后又能每个月生出一对小兔子。问第n个月有多少只兔子? 聪明的你可能已经发现,第n个月的兔子数正好是第n个Fibonacci(斐波那契)数。栋栋不懂什么是Fibonacci数,但他也发现了规律:第i+2个月的兔子数等于第i个月的兔子数加上第i+1个月的兔子数。前几个月的兔子数依次为: 1 1 2 3 5 8 13 21 34 … 栋栋发现越到后面兔子数增长的越快,期待养兔子一定能赚大钱,于是栋栋在第一个月初买了一对小兔子开始饲养。 每天,栋栋都要给兔子们喂食,兔子们吃食时非常特别,总是每k对兔子围成一圈,最后剩下的不足k对的围成一圈,由于兔子特别害怕孤独,从第三个月开始,如果吃食时围成某一个圈的只有一对兔子,这对兔子就会很快死掉。 我们假设死去的总是刚出生的兔子,那么每个月的兔子数仍然是可以计算的。例如,当k=7时,前几个月的兔子数依次为: 1 1 2 3 5 7 12 19 31 49 80 … 给定n,你能帮助栋栋计算第n个月他有多少对兔子么?由于答案可能非常大,你只需要告诉栋栋第n个月的兔子对数除p的余数即可。 ###Input 输入一行,包含三个正整数n, k, p。 ###Output 输出一行,包含一个整数,表示栋栋第n个月的兔子对数除p的余数。 ###Sample Input 6 7 100 ###Sample Output 7 ###Solution 按模k余数写出数列,则为 1,1,...,a,0, a,a,...,b,0, b,b,...,c,0, ... 这个数列最后有可能每一排首项循环,也有可能不再出现0 每次求a的逆元,则其在fib数列中首次出现位置就是a后面下一个0的位置,如果没有0特判 ###Code ```c++ #include typedef long long ll; #define fo0(i,n) for(int i=0,i##end=n;i>=1,a*=a)if(p&1)r*=a; return r; } struct data { int st,len;mat x; }s[1000001]; inline mat get(ll n,int tt) { mat r=(mat){1,0,0,0,1,0,0,0,1}; if(!n)return r; for(;n>=s[tt].len;n-=s[tt++].len)r*=s[tt].x; return r*pow((mat){0,1,0,1,1,0,0,0,1},n); } int main() { scanf("%lld%d%d",&n,&k,&p); for(int i=3;;i++) { f[i]=f[i-1]+f[i-2]; if(f[i]>=k)f[i]-=k; if(!pos[f[i]])pos[f[i]]=i; if(f[i]==1&&f[i-1]==0)break; } int ns=1,sc=1; for(;!p2[ns];sc++) { s[sc].st=ns; p2[ns]=sc; int t1,t2; exgcd(k,ns,t1,t2); if(t2<0)t2+=k; t1=pos[t2]; if((ll)ns*t2%k!=1||!t1)break; s[sc].len=t1; s[sc].x=pow((mat){0,1,0,1,1,0,0,0,1},t1-1)*(mat){0,1,0,1,1,0,0,-1,1}; ns=(ll)ns*f[t1-1]%k; } mat bfm=(mat){1,0,0,0,1,0,0,0,1},lpm=(mat){1,0,0,0,1,0,0,0,1},ans=(mat){1,0,0,0,1,0,0,0,1}; ll bf=0,lp=0; fo1(i,p2[ns]-1)bf+=s[i].len,bfm*=s[i].x; fo(i,p2[ns],sc-1)lp+=s[i].len,lpm*=s[i].x; if(!lp)lp=1,lpm=(mat){0,1,0,1,1,0,0,0,1}; if(n=p)a1-=p;while(a1<0)a1+=p; printf("%d\n",a1); } ```