Codeforces 809E. Surprise me! May 25, 2017 ###Description 给一棵树,每个点点权 $$a_i$$,保证 $$a_i$$各不相同,现在随机选两个点 $$u,v$$,求 $$f(u,v)=\phi(a_u\cdot a_v)\cdot dis(u,v)$$ 的期望,$$mod\ 10^9+7$$。 链接:[http://codeforces.com/contest/809/problem/E](http://codeforces.com/contest/809/problem/E "http://codeforces.com/contest/809/problem/E") ###Solution 首先,有一个结论:$$\phi(a\cdot b)=\frac{\phi(a)\cdot\phi(b)\cdot g}{\phi(g)},g=gcd(a,b)$$ 证明:考虑找一个 $$x$$,使得 $$x|b,gcd(\frac{b}{x},a)=1,gcd(x,\frac{b}{x})=1$$ 且 $$a$$ 包含 $$x$$ 中所有质因子。 那么 $$\phi(a\cdot b)=\phi(a)\cdot x\cdot\phi(\frac{b}{x})=\frac{\phi(a)\cdot\phi(b)\cdot x}{\phi(x)}$$ 显然,$$x$$ 是 $$g$$ 的倍数,所以 $$\frac{x}{g}=\frac{\phi(x)}{\phi(g)}$$,所以$$\phi(a\cdot b)=\frac{\phi(a)\cdot\phi(b)\cdot g}{\phi(g)}$$ 有了这个结论之后可以考虑点分,那么设 $$dis(x)$$ 表示 $$x$$ 到当前根的距离。 设 $$h(x)=\frac{x}{\phi(x)}$$,那么$$f(u,v)=\phi(a_u)\cdot\phi(a_v)\cdot h(g)\cdot(dis(u)+dis(v)),g=gcd(a_u,a_v)$$ 考虑当 $$u$$ 确定时,需要知道 $$\sum\phi(a_v)\cdot h(gcd(a_u,a_v))$$ 和 $$\sum\phi(a_v)\cdot h(gcd(a_u,a_v))\cdot dis(v)$$。 设 $$g(x)=h(x)-\sum[y|x,y\neq x]g(y)$$,那么 $$h(gcd(a_u,a_v))=\sum[x|a_u,x|a_v]g(x)$$ 这样就可以直接枚举约数算贡献了。 ###Code ```c++ #include typedef long long ll; inline void repr(int&a,int b){if(av[N]; int n,pr[N],pm,phi[N],inv[N],f[N],w[N],sz[N],rsz,nro,nsz,g[N],h[N],q[N],qe,ans; bool vis[N]; inline void dfs1(int x,int fa) { sz[x]=1; for(edge*i=p[x];i;i=i->ne) if(i->to!=fa&&!vis[i->to]) { dfs1(i->to,x); sz[x]+=sz[i->to]; } } inline void dfs2(int x,int fa) { int t=rsz-sz[x]; for(edge*i=p[x];i;i=i->ne) if(i->to!=fa&&!vis[i->to]) { repr(t,sz[i->to]); dfs2(i->to,x); } if(tne) if(i->to!=fa&&!vis[i->to]) dfs3(i->to,x,dis+1); } inline void dfs4(int x,int fa,int dis) { int a=phi[w[x]],b=(ll)a*dis%P,A,B; foe(i,v[w[x]]) { get(*i,A,B); ans=(ans+(ll)a*B+(ll)b*A)%P; } for(edge*i=p[x];i;i=i->ne) if(i->to!=fa&&!vis[i->to]) dfs4(i->to,x,dis+1); } inline void work(int x) { dfs1(x,0); rsz=nsz=sz[x],nro=x; dfs2(x,0); vis[x=nro]=1; foe(i,v[w[x]])set(*i,phi[w[x]],0); for(edge*i=p[x];i;i=i->ne) if(!vis[i->to]) { dfs4(i->to,x,1); dfs3(i->to,x,1); } fo0(i,qe)g[q[i]]=h[q[i]]=-1; qe=0; for(edge*i=p[x];i;i=i->ne) if(!vis[i->to])work(i->to); } int main() { fo1(i,N-1)for(int j=i;j
BZOJ 2694 & 4659 Lcm February 28, 2017 ###Description ![fa(1).jpg][1] ###Solution $$\sum_i^n\sum_j^m[\mu(gcd(i,j))\neq 0]lcm(i,j)$$ $$=\sum_k^n|\mu(k)|\sum_i^{\frac{n}{k}}\sum_j^{\frac{n}{k}}[gcd(i,j)=1]i\cdot j\cdot k$$ $$=\sum_k^n|\mu(k)|\cdot k\sum_d^{\frac{n}{k}}\mu(d)\cdot d^2\sum_i^{\frac{n}{k\cdot d}}\sum_j^{\frac{m}{k\cdot d}}i\cdot j$$ $$=\sum_k^n\sum_d[d|k]\mu(d)\cdot d^2\cdot|\mu(\frac{k}{d})|\cdot\frac{p}{d}\cdot\frac{\frac{n}{k}\cdot(\frac{n}{k}+1)}{2}\cdot\frac{\frac{m}{k}\cdot(\frac{m}{k}+1)}{2}$$ 最后的式子,前面是积性函数,后面根号分块 ###Code ```c++ #define _GLIBCXX_IOSTREAM #include #define N 4000001 int pri[N],pm,f[N],ps[N],pc[N]; bool np[N]; int main() { for(int i=2;i>2; } printf("%d\n",ans&0x3fffffff); } } ``` [1]: /usr/uploads/2017/02/3245901942.jpg [2]: /usr/uploads/2017/02/1279320617.png
BZOJ 3552: 最右非零的数 December 16, 2016 ###Description 给出正整数N(可能有前导0),请求出N!最右非零的数位的值。 ###Input 第一行一个数T表示数据组数 下接T行每行一个数N表示一组数据 ###Output 对于每组数据,输出一行一个数表示这组数据的答案 ###Sample Input 2 5 4 ###Sample Output 2 4 ###Solution 随便lucas一下就好了,然而懒得写高精,就用了python,于是实力rank last ###Code ```python T=int(raw_input()) for I in range(T): n=int(raw_input());t=n;a=0;b=0;c=1 while t>0:t/=2;a+=t while n>0:c=c*[1,1,2,1,4,4,4,3,4,1][n%10]%5;n/=5;b+=n a=a-b+1 if a>1:a=0 t=3 while b>0: if b&1:c=c*t%5 t=t*t%5 b/=2 print (a*5+c*6)%10 ```
BZOJ 3113: Toy November 29, 2016 ###Description 外面有一圈N个结点,中心有一个结点与N个结点都相连,总共就是2*N条边,删除N条边,使N+1个点连通,旋转相同视为等价,问有多少种情况。 ![1.jpg][1] ###Input 输入N,M 3<=N<=10^9, 2<=M<=10^9 ###Output 输出方案数 Mod M的结果 ###Sample Input 3 10000 4 10000 4 10 ###Sample Output 6 13 3 ###Solution 考虑burnside引理,假设分成d块,那么每块的方案数是和bzoj1002一样的,可以用公式 f(n+1) = 3\*f(n) - f(n-1) + 2 计算 所以得到这个公式:1/n\*Sum_{d divides n} phi(n/d)*f(d) 于是直接根号n枚举d,然后根号d求phi,矩阵快速幂求f ###Code ```c++ #include typedef long long ll; typedef long double ldb; ll mod; inline ll fm(ll x,ll y) { ll tmp=(x*y-(ll)((ldb)x/mod*y+1e-8)*mod); return tmp<0?tmp+mod:tmp; } inline void mul(ll (&a)[3][3],ll (&b)[3][3],ll (&c)[3][3]) { ll t[3][3]={{0,0,0},{0,0,0},{0,0,0}}; for(int i=0;i<3;i++) for(int j=0;j<3;j++) for(int k=0;k<3;k++) t[i][k]+=fm(a[i][j],b[j][k]); for(int i=0;i<3;i++) for(int j=0;j<3;j++) c[i][j]=t[i][j]%mod; } inline ll f(int x) { if(x<=1)return x; x--; ll a[3][3]={{1,0,2},{0,0,mod-1},{0,1,3}},b[3][3]={{1,0,0},{0,1,0},{0,0,1}}; for(int i=1;i<=x;i<<=1) { if(i&x)mul(b,a,b); mul(a,a,a); } ll ret=b[0][2]+b[2][2]; if(ret>=mod)return ret-mod;return ret; } inline int phi(int x) { int t=x; for(int i=2;i*i<=x;i++) if(x%i==0) { t/=i,t*=i-1; x/=i; while(x%i==0)x/=i; } if(x>1)t/=x,t*=x-1; return t; } int main() { int n; while(~scanf("%d%lld",&n,&mod)) { mod*=n; ll a2=0; for(int i=1;i*i<=n;i++) if(n%i==0) { if(i*i==n) { a2+=fm(phi(i),f(i)); } else { a2+=fm(phi(i),f(n/i))+fm(phi(n/i),f(i)); } a2%=mod; } printf("%lld\n",a2/n); } } ``` [1]: /usr/uploads/2016/11/709092212.jpg
BZOJ 3884: 上帝与集合的正确用法 October 16, 2016 ###Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”。 第二天, 上帝创造了一个新的元素,称作“α”。“α”被定义为“元”构成的集合。容易发现,一共有两种不同的“α”。 第三天, 上帝又创造了一个新的元素,称作“β”。“β”被定义为“α”构成的集合。容易发现,一共有四种不同的“β”。 第四天, 上帝创造了新的元素“γ”,“γ”被定义为“β”的集合。显然,一共会有16种不同的“γ”。 如果按照这样下去,上帝创造的第四种元素将会有65536种,第五种元素将会有2^65536种。这将会是一个天文数字。 然而,上帝并没有预料到元素种类数的增长是如此的迅速。他想要让世界的元素丰富起来,因此,日复一日,年复一年,他重复地创造着新的元素…… 然而不久,当上帝创造出最后一种元素“θ”时,他发现这世界的元素实在是太多了,以致于世界的容量不足,无法承受。因此在这一天,上帝毁灭了世界。 至今,上帝仍记得那次失败的创世经历,现在他想问问你,他最后一次创造的元素“θ”一共有多少种? 上帝觉得这个数字可能过于巨大而无法表示出来,因此你只需要回答这个数对p取模后的值即可。 你可以认为上帝从“α”到“θ”一共创造了10^9次元素,或10^18次,或者干脆∞次。 一句话题意: ![1.png][1] ###Input 接下来T行,每行一个正整数p,代表你需要取模的值 ###Output T行,每行一个正整数,为答案对p取模后的值 ###Sample Input 3 2 3 6 ###Sample Output 0 1 4 ###HINT 对于100%的数据,T<=1000,p<=10^7 ###Solution 首先考虑欧拉定理,如果把这个数设为S,可以发现$$2^S=2^{S\ mod\ \phi(p)}$$ (当p是2的倍数时可以先除去所有2处理) 那么问题就转化为了求$$S\ mod\ \phi(p)$$,同样考虑,最终$$\phi(p)$$会等于1,直接处理即可 由于除了第一次,每次都会除去至少一个2,所以单次时间复杂度为$$O(logp)$$ ###Code ```c++ #include #define pmax 10000000 int prime[1000000],pm,fi[pmax+1],ans[pmax+1]; bool np[pmax+1],ga[pmax+1]; inline int pow(int a,long long t,int mod) { long long p=1,q=a,f=1; for(;f<=t;f<<=1) { if(f&t)p=p*q%mod; q=q*q%mod; } return p; } void exgcd(int a,int b,int &x,int &y) { if(!b) { x=1,y=0; return; } exgcd(b,a%b,y,x); y-=(a/b)*x; } inline int gen(int x,int t) { if(x==1)return 0; int a,b,p; if(x>t)exgcd(x,t,a,b);else exgcd(t,x,b,a); p=(long long)ans[x]*t%(x*t)*b%(x*t); if(p<0)p+=x*t; return p; } int getans(int x) { int t=1; while(~x&1)x>>=1,t<<=1; if(!ga[x])ga[x]=1,ans[x]=pow(2,1000ll*fi[x]+getans(fi[x]),x); return gen(x,t); } int main() { for(int i=2;i<=pmax;i++) { if(!np[i])prime[pm++]=i,fi[i]=i-1; for(int j=0;j
BZOJ1041: [HAOI2008]圆上的整点 September 18, 2016 ###Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数。 ###Input 只有一个正整数n,n<=2000 000 000 ###Output 整点个数 ###Sample Input 4 ###Sample Output 4 ###Solution 只考虑x,y均大于0的情况 首先,暴力枚举肯定是O(n)的,T 对于勾股数有一个结论,就是如果$$x^2+y^2=n^2$$,那么$$x=t(a^2-b^2),y=2tab,n=t(a^2+b^2)$$ 那么我们可以枚举t,显然,只需要枚举n的每个质因数是否在t中就可以了(t中不需要有重复质因子) 枚举t后,需要将n/t写成a^2+b^2的形式,枚举a从1到sqrt(n/t),时间复杂度O(sqrt(n/t)) 注意去掉重复的a,b,用map实现即可 总时间复杂度应该是根号乘log吧。。 这显然不是正解,不过跑的还是挺快的 ###Code ```c++ #include #include #include #include std::map f; #define pmax 65536 int prime[10000],pm,x[10],y[10],cc,ans=0,n; bool np[pmax+1]; inline int solve(int nn) { int ans=0; for(int i=sqrt(nn);i>0;i--) { int a=nn-i*i,b=sqrt(nn-i*i); if(b*b==a) { int c=2*b*i,d=std::abs(b*b-i*i); if(!(c&&d))continue; if(!(f[c*(n/nn)]||f[d*(n/nn)])) { f[c*(n/nn)]=f[d*(n/nn)]=1; ans+=8; } } } return ans; } void dfs(int id,int nn) { if(id==cc) { ans+=solve(n/nn); return; } dfs(id+1,nn); dfs(id+1,nn*x[id]); } int main() { for(int i=2;i<=pmax;i++) { if(!np[i])prime[pm++]=i; for(int j=0;j1)x[cc++]=n; n=m; dfs(0,1); printf("%d\n",ans+4); return 0; } ```
BZOJ 1407: [Noi2002]Savage September 14, 2016 ###Description ![1407.jpg][1] ###Input 第1行为一个整数N(1<=N<=15),即野人的数目。 第2行到第N+1每行为三个整数Ci, Pi, Li表示每个野人所住的初始洞穴编号,每年走过的洞穴数及寿命值。 (1<=Ci,Pi<=100, 0<=Li<=10^6) ###Output 仅包含一个数M,即最少可能的山洞数。输入数据保证有解,且M不大于10^6。 ###Sample Input 3 1 3 4 2 7 3 3 2 1 ###Sample Output 6 ###Solution 枚举m,每次枚举两个野人,将他们的ci,pi相减,记为c,p,那么如果有一个k在他们的年龄范围内,且c+pk模m等于0,则这个m不能取,k的最小值可以用扩展欧几里得求出 预处理每两个野人的ci,pi之差,li的最小值,可以优化时间 ###Code ```c++ #include int n,c[15],p[15],l[15],c2[105],p2[105],l2[105],n2=0; inline int min(int a,int b) { if(ab)return a;else return b; } int sol,gcd; void exgcd(int a,int b,int &x,int &y) { if(!b) { x=sol/a;y=0; gcd=a; return; } exgcd(b,a%b,y,x); y-=x*(a/b); } inline int safeexgcd(int a,int b,int &x,int &y) { if(a