PlaidCTF 2020 Writeup April 29, 2020 # Crypto ## stegasaurus scratch Given a c file, which calls lua, and we need to finish two tasks. In the first one, we need to construct an injective map between 8 distinct numbers from 0 to 39999, and 7 distinct numbers with their permutation. Note that C(40000,8)/C(40000,7) is about 5000, which is less than 7!, thus it’s possible. We may delete the number which is k-th smallest, where k is the total sum of 8 numbers modulo 8. For any 7-number tuples, there exists about 5000(more precisely, less than 5008) other numbers, such that it will be deleted. We can find the rank of the actual one in them, and encode it into a permutation. In the second task, Alice is given an array of length 96, consists of 32 `2`s and 64 `1`s, she needs to mark 32 of the `1`s to `0`. Bob is given the remaining array, but he only knows whether a number is `0`. He needs to find all “2”s. In fact, the task needs a bijective map from C(96,32) to C(96,32), but each pair don’t have common elements. We may split the sequence into blocks of length 2, if some block is 01 or 10, just flip it. Otherwise, we obtain a new sequence with `11` and `00`, thus it’s the same as the original problem, and we can recursively solve it. ```lua function nthperm(n) s={} t=1 for i=1,7,1 do a=n//t t=t*i b=a//i c=a-i*b s[i]=c+1 end for i=1,7,1 do for j=1,i-1,1 do if s[j]>=s[i] then s[j]=s[j]+1 end end end return s end function permrank(s) s=table.shallow_copy(s) n=0 t=1 for i=7,1,-1 do for j=1,i-1,1 do if s[j]>s[i] then s[j]=s[j]-1 end end end for i=1,7,1 do n=n+(s[i]-1)*t t=t*i end return n end function getdel(s) sum=0 for i=1,8,1 do sum=sum+s[i] end return s[sum-(sum//8)*8+1] end function table.shallow_copy(t) local res={} for k=1,#t,1 do res[k]=t[k] end return res end function count(l,r,r2,v) if(r>r2)then r=r2 end if(l>r)then return 0 end lt=l//8 rt=r//8 if(lt==rt)then if(l<=lt*8+v and lt*8+v<=r)then return 1 end return 0 end res=rt-lt-1 if(l<=lt*8+v)then res=res+1 end if(rt*8+v<=r)then res=res+1 end return res end function modt(x) if(x<0)then return x+8 end return x end function countus(s,x) sum=0 for i=1,7,1 do sum=sum+s[i] end sum=sum-(sum//8)*8 res=count(0,s[1]-1,x,modt(-sum)) for i=1,6,1 do res=res+count(s[i]+1,s[i+1]-1,x,modt(i-sum)) end res=res+count(s[7]+1,39999,x,modt(7-sum)) return res end function kthus(s,k) l=-1 r=39999 while l+1=k)then r=mid else l=mid end end return r end function Alice1(s) table.sort(s) x=getdel(s) local res={} for i=1,8,1 do if(s[i]~=x)then table.insert(res,s[i]) end end c=countus(res,x) rv=nthperm(c) resn={} for i=1,7,1 do resn[i]=res[rv[i]] end return resn end function Bob1(s) res=table.shallow_copy(s) table.sort(s) rv={} for i=1,7,1 do for j=1,7,1 do if res[i]==s[j] then rv[i]=j end end end c=permrank(rv) t=kthus(s,c) return t end function getothseq(s) if(#s==1)then return s end if(#s-(#s//2)*2==1)then tmp=table.shallow_copy(s) table.remove(tmp) tmp=getothseq(tmp) table.insert(tmp,0) return tmp end tmp={} for i=1,#s-1,2 do if(s[i]==s[i+1])then table.insert(tmp,s[i]) end end tmp=getothseq(tmp) c=0 res={} for i=1,#s-1,2 do if(s[i]==s[i+1])then c=c+1 table.insert(res,tmp[c]) table.insert(res,tmp[c]) else table.insert(res,s[i+1]) table.insert(res,s[i]) end end return res end function Alice2(s) tmp={} for i=1,96,1 do table.insert(tmp,s[i]-1) end v=getothseq(tmp) res={} for i=1,96,1 do if(s[i]==1 and v[i]==1) then table.insert(res,i) end end return res end function Bob2(s) tmp={} for i=1,96,1 do table.insert(tmp,1-s[i]) end v=getothseq(tmp) res={} for i=1,96,1 do if(s[i]==1 and v[i]==1) then table.insert(res,i) end end return res end ``` # Reverse ## The Watness 2 Run the game with HyperZebra, we find that it checks the solution with some external function, if all three levels are passed, it will output flag using the solution and some built-in keys. The checking part is like a cellular automaton, and we can find the solution by bfs. Finally, just play the game with these paths, and we can see the flag. ```python s='rrbrb rg g bgrbgggr ggrgr gr rg brr b bggrbgbb' t={' ':0,'r':1,'g':2,'b':3} v=' rgb' s=[list(s[i:i+7])for i in range(0,49,7)] for i in range(7): for j in range(7): s[i][j]=t[s[i][j]] def get(x,y): if x<0 or x>6 or y<0 or y>6: return 0 return s[x][y] def get_neighbors(x,y): c=[0]*4 for i in range(-1,2): for j in range(-1,2): if i or j: c[get(x+i,y+j)]+=1 return c[1],c[2],c[3] def nxt(s): r=[[0]*7 for i in range(7)] for i in range(7): for j in range(7): c1,c2,c3=get_neighbors(i,j) arg4,arg2,arg0=c1,c2,c3 if s[i][j]==0: if arg2==0 and arg0==0: arg6=0 elif arg04: arg6=0 elif arg0>4: arg6=3 elif arg4==2 or arg4==3: arg6=1 else: arg6=2 else: assert s[i][j]==3 if arg4>4: arg6=0 elif arg2>4: arg6=2 elif arg4==2 or arg4==3: arg6=1 else: arg6=3 r[i][j]=arg6 return r def ok_red(x1,y1,x2,y2): if x1<0 or x1>7 or y1<0 or y1>7: return 0 if x2<0 or x2>7 or y2<0 or y2>7: return 0 if x1==x2: if y1>y2:y1=y2 return get(x1,y1)==1 or get(x1-1,y1)==1 assert y1==y2 if x1>x2:x1=x2 return get(x1,y1)==1 or get(x1,y1-1)==1 pos=[(0,0,'','(0,0)')] for i in range(50): npos=set() for x,y,path,his in pos: for nx,ny,d in [(x-1,y,'u'),(x+1,y,'d'),(x,y-1,'l'),(x,y+1,'r')]: if ok_red(x,y,nx,ny): np=path+d if '(%d,%d)'%(nx,ny) in his: continue npos.add((nx,ny,np,his+'(%d,%d)'%(nx,ny))) pos=npos for x,y,path,his in pos: if x==7 and y==7: print(len(path),path) s=nxt(s) ``` ## A Plaid Puzzle It contains a big matrix, elements fall down, change according to the characters of the flag, and interact with each other. In fact, each line of the puzzle is independent. The last element will “eat” every element in front of it, and finally check if it’s equal to some constant. There are 64 different statuses in this process, and in fact it’s just xor (but shuffled). So we can find some relations about the xor, and find the flag by gauss elimination. ```python raw=open('code.txt','r',encoding='utf-8').readlines() cmap={} for i in range(1139,1267): a,b=raw[i].strip().split(' = ') cmap[a]=b cmap['C']='fljldviokmmfmqzd' cmap['F']='iawjsmjfczakueqy' cmap['.']='.' cmap['X']='X' rule1s=[] rule1={} rule1x={} for i in range(64): rule1['char'+str(i)]={} for i in range(1427,5523): t=raw[i].strip() a,b=t[:-6].split(' -> ') ax,ay=a[2:-2].split(' | ') bx,by=b[2:-2].split(' | ') rule1s.append((ay,ax,bx)) rule1[ay][ax]=bx if ax not in rule1x: rule1x[ax]={} rule1x[ax][bx]=ay rule2s=[] rule2={} rule2x={} for i in range(5523,9619): t=raw[i].strip() a,c=t[8:-10].split(' ] -> [ ') a,b=a.split(' | ') rule2s.append((a,b,c)) if a not in rule2: rule2[a]={} rule2[a][b]=c if c not in rule2x: rule2x[c]={} rule2x[c][a]=b rule3s=[] rule3={} for i in range(9619,9747): t=raw[i].strip() a,c=t[2:-10].split(' ] -> [ ') a,b=a.split(' | ') rule3s.append((a,b,c)) if a not in rule3: rule3[a]={} rule3[a][b]=c board=[] for i in range(9760,9806): t=list(raw[i].strip()) for j in range(len(t)): t[j]=cmap[t[j]] board.append(t) board.append(['']*47) board.append(['X']+['char63']*45+['X']) charmap=list(map(chr,range(65,65+26)))+list(map(chr,range(97,97+26)))+list(map(chr,range(48,48+10)))+['{','}'] req='kkavwvmbabfuqctz' slist=[] for x in rule2x[req]: slist.append(rule2x[req][x]) sid={} for i in range(64): sid[slist[i]]=i tbl=[[0]*64 for i in range(64)] for tr in slist: for op1 in range(64): t=board[1][2] v=rule1['char'+str(op1)][t] nxt=rule2x[tr][v] tbl[sid[tr]][op1]=sid[nxt] t=[] u=0 cur=set([u]) while True: x=0 while x<64 and tbl[u][x] in cur: x+=1 if x==64: break t.append(x) for i in cur.copy(): cur.add(tbl[i][x]) curu=[] for i in range(64): if tbl[u][i] in cur: curu.append(i) sr=[] for i in range(64): v=u for j in range(6): if i>>j&1: v=tbl[v][t[j]] for j in range(64): if tbl[u][j]==v: sr.append(j) sl=[] for i in range(64): sl.append(tbl[u][sr[i]]) slrev=[0]*64 for i in range(64): slrev[sl[i]]=i eq=[] for X in range(45,0,-1): cur=[] xor_const=slrev[sid[req]]^slrev[sid[board[X][46]]] for Y in range(1,46): t=board[X][Y] tmp=[0]*6 for i in range(6): k=sr[1<>i&1) t.append(xor_const>>i&1) eq.append(t) s=eq n=len(s) m=len(s[0]) c=0 for i in range(m-1): if not s[c][i]: t=c+1 while t